Source code for clease.data_manager

from abc import ABC, abstractmethod
from collections import defaultdict
from itertools import combinations_with_replacement as cwr
import logging
import sqlite3
from typing import Dict, List, Optional, Sequence, Set, Tuple

from ase.db import connect
import numpy as np

from clease import db_util
from clease.tools import add_file_extension, get_ids, sort_cf_names

logger = logging.getLogger(__name__)

__all__ = (
    "InconsistentDataError",
    "DataManager",
    "CorrFuncEnergyDataManager",
    "CorrelationFunctionGetter",
    "CorrFuncVolumeDataManager",
    "CorrelationFunctionGetterVolDepECI",
    "FinalStructPropertyGetter",
    "make_corr_func_data_manager",
)


[docs] class InconsistentDataError(Exception): """Data is inconsistent"""
class PropertyGetter(ABC): """Base class for getting a property from the database""" def __init__(self, db_name: str): self.db_name = db_name @abstractmethod def get_property(self, ids: Sequence[int]) -> np.ndarray: """Return the properties of all structures which matches the criteria""" def connect(self, **kwargs): """Return an ASE connection to the database""" return connect(self.db_name, **kwargs) class FeatureGetter(PropertyGetter, ABC): """A base class for getting features, e.g. correlation functions""" @property @abstractmethod def names(self) -> Sequence[str]: """Return a name for each feature""" class TargetGetter(PropertyGetter, ABC): """A base class for getting targets, e.g. energy per atom""" @property @abstractmethod def name(self) -> str: """Return the name of the target property"""
[docs] class DataManager(ABC): """ DataManager is a class for extracting data from CLEASE databases to be used to fit ECIs :param db_name: Name of the database """ def __init__(self, db_name: str): self.db_name = db_name self._X = None self._y = None self._feat_names = None self._target_name = None
[docs] @abstractmethod def get_data(self, select_cond: List[tuple]) -> Tuple[np.ndarray, np.ndarray]: """ Return the design matrix X and the target data y """
def _get_data_from_getters( self, select_cond: List[tuple], feature_getter: FeatureGetter, target_getter: TargetGetter ) -> Tuple[np.ndarray, np.ndarray]: """ Return the design matrix X and the target data y :param select_cond: List of tuples with selection conditions (e.g. [('converged', '='' True)]) :param feature_getter: Instance of a FeatureGetter object that returns design matrix. :param target_getter: Instance of a TargetGetter object that extracts the target value (e.g. energy per atom) Example: >>> import clease >>> from clease.data_manager import ( ... CorrelationFunctionGetter, FinalStructEnergyGetter, ... DataManager) >>> from ase.db import connect >>> from ase import Atoms >>> from ase.calculators.emt import EMT >>> db_name = 'somedb.db' >>> db = connect(db_name) # Make sure that the DB exists >>> clease.db_util.new_row_with_single_table(db, Atoms('Cu'), ... 'polynomial_cf', {'c0': 1.0}, final_struct_id=2, converged=True) 1 >>> final = Atoms('Cu') >>> final.calc = EMT() >>> _ = final.get_potential_energy() >>> db.write(final) 2 >>> feat_getter = CorrelationFunctionGetter(db_name, 'polynomial_cf', ... ['c0', 'c1_0', 'c2_d0000_0_00'], ) >>> targ_getter = FinalStructEnergyGetter(db_name) >>> manager = DataManager(db_name) >>> X, y = manager.get_data([('converged', '=', 1)], feat_getter, ... targ_getter) >>> import os >>> os.remove(db_name) """ ids = get_ids(select_cond, self.db_name) # Extract design matrix and the target values cfm = feature_getter.get_property(ids) target = target_getter.get_property(ids) self._X = np.array(cfm, dtype=float) self._y = np.array(target) self._feat_names = feature_getter.names self._target_name = target_getter.name nrows = self._X.shape[0] num_data = len(self._y) if nrows != num_data: raise InconsistentDataError( f"Num. rows in deisgn matrix {nrows}." f"Num. data points {num_data}\n" "This is normally caused by a non-converged structure " "being extracted from database. Check that all structures" "extracted from DB using your query has a corresponding" "final structure." ) return self._X, self._y
[docs] def to_csv(self, fname: str): """ Export the dataset used to fit a model y = Xc where y is typically the DFT energy per atom and c is the unknown ECIs. This function exports the data to a csv file with the following format # ECIname_1, ECIname_2, ..., ECIname_n, E_DFT 0.1, 0.4, ..., -0.6, -2.0 0.3, 0.2, ..., -0.9, -2.3 thus each row in the file contains the correlation function values and the corresponding DFT energy value. :param fname: Filename to write to. Typically this should end with .csv """ if self._X is None: return fname = add_file_extension(fname, ".csv") header = ",".join(self._feat_names) + f",{self._target_name}" data = np.hstack((self._X, np.reshape(self._y, (len(self._y), -1)))) np.savetxt(fname, data, delimiter=",", header=header) logger.info("Dataset exported to %s", fname)
[docs] def get_matching_names(self, pattern: str) -> List[str]: """ Get names that matches pattern :param pattern: Pattern which the string should contain. Example: If the names are ['abc', 'def', 'gbcr'] and the passed pattern is 'bc', then ['abc', 'gbcr'] will be returned """ return [n for n in self._feat_names if pattern in n]
[docs] def get_cols(self, names: List[str]) -> np.ndarray: """ Get all columns corresponding to the names :pram names: List of names (e.g. ['c0', 'c1_1']) """ name_idx = {n: i for i, n in enumerate(self._feat_names)} indices = [name_idx[n] for n in names] return self._X[:, indices]
[docs] def groups(self) -> List[int]: """ Returns the group of each item in the X matrix. In the top-level DataManager it is assumed that each row in the X matrix constitutes its own group. But this method may be overrided in child classes. """ if self._X is None: return [] return list(range(self._X.shape[0]))
[docs] class CorrFuncEnergyDataManager(DataManager): """ CorrFuncFinalEnergyDataManager is a convenience class provided to handle the standard case where the features are correlation functions and the target is the DFT energy per atom :param db_name: Name of the database being passed :param cf_names: List with the correlation function names to extract :param tab_name: Name of the table where the correlation functions are stored :param order: Order of the correlation function. Default 1. """ def __init__( self, db_name: str, tab_name: str, cf_names: Optional[List[str]] = None, order: int = 1, ) -> None: super().__init__(db_name) self.tab_name = tab_name self.cf_names = cf_names self.order = order
[docs] def get_data(self, select_cond: List[tuple]) -> Tuple[np.ndarray, np.ndarray]: """ Return X and y, where X is the design matrix containing correlation functions and y is the DFT energy per atom. :param select_cond: List with select conditions for the database (e.g. [('converged', '=', True)]) """ return self._get_data_from_getters( select_cond, CorrelationFunctionGetter(self.db_name, self.tab_name, self.cf_names, order=self.order), FinalStructEnergyGetter(self.db_name), )
class CorrFuncPropertyDataManager(DataManager): """ CorrFuncFinalEnergyDataManager is a convenience class provided to handle the standard case where the features are correlation functions and the target is the user defined property (eg: bandgap, distortion etc) which is in the databse as key-value-pair. :param db_name: Name of the database being passed :param cf_names: List with the correlation function names to extract :param tab_name: Name of the table where the correlation functions are stored :param order: Order of the correlation function. Default 1. :prop: User given property """ def __init__( self, prop: str, db_name: str, tab_name: str, cf_names: Optional[List[str]] = None, order: int = 1, ) -> None: super().__init__(db_name) self.tab_name = tab_name self.cf_names = cf_names self.order = order self.prop = prop def get_data(self, select_cond: List[tuple]) -> Tuple[np.ndarray, np.ndarray]: """ Return X and y, where X is the design matrix containing correlation functions and y is the DFT energy per atom. :param select_cond: List with select conditions for the database (e.g. [('converged', '=', True)]) """ return self._get_data_from_getters( select_cond, CorrelationFunctionGetter(self.db_name, self.tab_name, self.cf_names, order=self.order), FinalStructPropertyGetter(self.db_name, self.prop), )
[docs] class CorrelationFunctionGetter(FeatureGetter): """ CorrelationFunctionGetter is a class that extracts the correlation functions from an AtomsRow object :param db_name: Name of the database :param tab_name: Name of the external table where the correlation functions are stored :param cf_names: List with the names of the correlation functions. If None, all correlation functions in the database will be extracted :param order: Order of the correlation function. Default is 1. """ def __init__( self, db_name: str, tab_name: str, cf_names: Optional[List[str]] = None, order: int = 1 ) -> None: super().__init__(db_name) self.tab_name = tab_name self.cf_names = cf_names self.order = order @property def names(self): """ Return a name of each column """ return self.cf_names def _extract_cf_name(self, name: str) -> bool: """ Return True if the name should be extracted """ return self.cf_names is None or name in self.cf_names @staticmethod def _is_matrix_representable(id_cf_names: Dict[int, List[str]]) -> bool: """ Check if the extracted correlation functions can be represented as a matrix. """ reference = sorted(list(id_cf_names.values())[0]) # Check the names of the correlation functions is equal for # all rows for v in id_cf_names.values(): srt_v = sorted(v) if len(srt_v) != len(reference): return False if any(x != y for x, y in zip(reference, srt_v)): return False return True @staticmethod def _minimum_common_cf_set(id_cf_names: Dict[int, List[str]]) -> Set[str]: """ Returns the minimum set of correlation functions that exists for all rows. """ common_cf = set(list(id_cf_names.values())[0]) for v in id_cf_names.values(): common_cf = common_cf.intersection(v) return common_cf
[docs] def get_property(self, ids: Sequence[int]) -> np.ndarray: """ Extracts the design matrix associated with the database IDs. The first row in the matrix corresponds to the first item in ids, the second row corresponds to the second item in ids etc. If cf_names was None, all correlation functions in the database will be extracted. cf_names will be updated such that it reflects the names of the correlation functions that were extracted. :param ids: Database IDs of initial structures """ sql = f"SELECT * FROM {self.tab_name}" # Format: {id1: {name1: cf_value1, name2: cf_value2, ...}, ...} # Use defaultdict, so we don't have to manually instantiate each sub-dict. id_cf_dct = defaultdict(dict) id_set = set(ids) with self.connect() as db: self._check_version(db, *ids) cur = db.connection.cursor() cur.execute(sql) # Extract the correlation function name and value. The ID is also # extracted to check if it is in ids. The correlation functions # are placed in a dictionary because the IDs is not nessecarily # a monotone sequence of ints for name, value, db_id in cur.fetchall(): if db_id in id_set and self._extract_cf_name(name): id_cf_dct[db_id][name] = value # Dictionary of just the names belonging to each ID id_cf_names = {i: list(v.keys()) for i, v in id_cf_dct.items()} if not self._is_matrix_representable(id_cf_names): min_set = self._minimum_common_cf_set(id_cf_names) msg = "The extracted correlation functions cannot be " msg += "represented as a matrix because there are a " msg += "number of columns for each row or at least one of " msg += "the names of the column differ.\n" msg += "Minimum common set of correlation functions.\n" msg += f"{min_set}\n" raise InconsistentDataError(msg) if self.cf_names is None: # No pre-existing CF names list was provided, # so we construct it from what was in the DB tmp = list(set(v for item in id_cf_names.values() for v in item)) self.cf_names = sort_cf_names(tmp) cf_matrix = np.zeros((len(id_cf_dct), len(self.cf_names))) # Convert the correlation function dictionary to a numpy 2D array # such that is can be passed to a fitting algorithm for row, db_id in enumerate(ids): cf_dct = id_cf_dct[db_id] # Retreive all of the CF values by name, and insert into matrix # Ensures ordering is preserved. Missing values are set to 0. cf_matrix[row, :] = [cf_dct.get(name, 0.0) for name in self.cf_names] if self.order > 1: cf_matrix = self._include_higher_order(cf_matrix) return cf_matrix
def _include_higher_order(self, cf_matrix: np.ndarray) -> np.ndarray: """ Adds columns to the cf_matrix consisting of higher orders. :param cf_matrix: Matrix holding first order correlation functions """ first_order_cf_indices = list(range(1, cf_matrix.shape[1])) nrows = cf_matrix.shape[0] for order in range(2, self.order + 1): for comb in cwr(first_order_cf_indices, r=order): X = np.ones((nrows, 1)) for i in comb: X[:, 0] *= cf_matrix[:, i] cf_matrix = np.hstack((cf_matrix, X)) name = "*".join(self.cf_names[i] for i in comb) # Add the new to the list of cf names self.cf_names.append(name) return cf_matrix def _check_version(self, connection, *ids: Sequence[int]) -> None: if db_util.require_reconfigure_table(connection, self.tab_name, *ids): raise db_util.OutOfDateTable( "An out of date correlation function table was found. " 'Please reconfigure your database, e.g. using "clease.reconfigure(settings)".' )
class FinalStructEnergyGetter(TargetGetter): """ FinalStructEnergyGetter is a callable class that returns the final energy (typically after structure relaxation) corresponding to the passed AtomsRow object. :param db_name: Name of the database """ @property def name(self): return "E_DFT (eV/atom)" def get_property(self, ids: Sequence[int]) -> np.ndarray: """ Extract the final energy of the ids passed. In the returned array, the first energy corresponds to the first item in ids, the second energy corresponds to the second item in ids etc. :param ids: Database ids of initial structures """ sql = "SELECT value, id FROM number_key_values " sql += "WHERE key='final_struct_id'" id_set = set(ids) # Map beetween the initial structure and the index in the id list init_struct_idx = {idx: i for i, idx in enumerate(ids)} with self.connect() as db: cur = db.connection.cursor() cur.execute(sql) final_struct_ids = [] # Map the between final struct id and initial struct id init_struct_ids = {} for final_id, init_id in cur.fetchall(): if init_id in id_set: final_struct_ids.append(final_id) init_struct_ids[final_id] = init_id # Extract the number of atoms of the initial structure num_atoms = extract_num_atoms(cur, id_set) final_struct_ids = set(final_struct_ids) sql = "SELECT id, energy FROM systems" cur.execute(sql) energies = np.zeros(len(final_struct_ids)) # Populate the energies array for final_id, energy in cur.fetchall(): if final_id in final_struct_ids: init_id = init_struct_ids[final_id] idx = init_struct_idx[init_id] energies[idx] = energy / num_atoms[init_id] return energies
[docs] class FinalStructPropertyGetter(TargetGetter): """ FinalStructPropertyGetter is a class that returns the user defined property value corresponding to the passed AtomsRow object. The user defined property should be located in the *final* atoms row. :param db_name: Name of the database """ def __init__(self, db_name: str, prop: str) -> None: super().__init__(db_name) self.prop = prop @property def name(self): return f"Property: {self.prop}"
[docs] def get_property(self, ids: Sequence[int]) -> np.ndarray: """ Extract the property of the ids passed. :param ids: Database ids of initial structures """ sql = "SELECT value, id FROM number_key_values " sql += "WHERE key='final_struct_id'" id_set = set(ids) # Map beetween the initial structure and the index in the id list init_struct_idx = {idx: i for i, idx in enumerate(ids)} with self.connect() as db: cur = db.connection.cursor() cur.execute(sql) final_struct_ids = [] # Map the between final struct id and initial struct id init_struct_ids = {} for final_id, init_id in cur.fetchall(): if init_id in id_set: final_struct_ids.append(final_id) init_struct_ids[final_id] = init_id final_struct_ids = set(final_struct_ids) sql = f"SELECT id, value FROM number_key_values WHERE key='{self.prop}'" cur.execute(sql) prop_values = np.zeros(len(final_struct_ids)) # Populate the property array for final_id, prop_value in cur.fetchall(): if final_id in final_struct_ids: init_id = init_struct_ids[final_id] idx = init_struct_idx[init_id] prop_values[idx] = prop_value return prop_values
class FinalVolumeGetter(TargetGetter): """ Class that extracts the final volume per atom of the relaxed structure :param db_name: Name of the database """ @property def name(self): return "Volume (A^3)" def get_property(self, ids: Sequence[int]) -> np.ndarray: """ Extracts the final volume of the ids passed. In the returned array, the first volume corresponds to the first item in ids, the second volume corresponds to the second item in ids etc. :param ids: Database IDs of initial structures """ id_set = set(ids) query = "SELECT value, id FROM number_key_values " query += "WHERE key='final_struct_id'" init_ids = {} id_idx = {db_id: i for i, db_id in enumerate(ids)} with self.connect() as db: cur = db.connection.cursor() cur.execute(query) final_struct_ids = [] # Extract the final struct id. Create a mapping between # final structure ids and initial structure ids for later # reference for value, db_id in cur.fetchall(): final_id = int(value) if db_id in id_set: final_struct_ids.append(final_id) init_ids[final_id] = db_id num_atoms = extract_num_atoms(cur, id_set) final_struct_ids = set(final_struct_ids) query = "SELECT id, volume FROM systems" cur.execute(query) volumes = np.zeros(len(init_ids)) # Extract the volume of the final structure and normalize it by # the number of atoms in the initial structure. The reason why # the number of atoms in the initial structure needs to be used, # is that vacancies are typically removed before the DFT run # starts. Consequently, they are missing in the final structure # and the number of atoms in that structure will be wrong for db_id, vol in cur.fetchall(): if db_id in final_struct_ids: init_id = init_ids[db_id] idx = id_idx[init_id] volumes[idx] = vol / num_atoms[init_id] return volumes
[docs] class CorrFuncVolumeDataManager(DataManager): """ CorrFuncVolumeDataManager is a convenience class provided to handle the standard case where the features are correlation functions and the target is the volume of the relaxed cell :param db_name: Name of the database being passed :param tab_name: Name of the table where the correlation functions are stored :param cf_names: List with the correlation function names to extract. If None, all correlation functions in the database will be extracted. :param order: Order of the correlation functions. Default 1. """ def __init__( self, db_name: str, tab_name: str, cf_names: Optional[List[str]] = None, order: int = 1, ) -> None: super().__init__(db_name) self.tab_name = tab_name self.cf_names = cf_names self.order = order
[docs] def get_data(self, select_cond: List[tuple]) -> Tuple[np.ndarray, np.ndarray]: """ Return X and y, where X is the design matrix containing correlation functions and y is the volume per atom. Parameters: select_cond: list List with select conditions for the database (e.g. [('converged', '=', True)]) """ return self._get_data_from_getters( select_cond, CorrelationFunctionGetter(self.db_name, self.tab_name, self.cf_names, order=self.order), FinalVolumeGetter(self.db_name), )
def extract_num_atoms(cur: sqlite3.Cursor, ids: Set[int]) -> Dict[int, int]: """ Extract the number of atoms for all ids :param cur: SQL-cursor object :param ids: Set with IDs in the database. """ sql = "SELECT id, natoms FROM systems" cur.execute(sql) num_atoms = {} for db_id, natoms in cur.fetchall(): if db_id in ids: num_atoms[db_id] = natoms return num_atoms
[docs] class CorrelationFunctionGetterVolDepECI(DataManager): """ Extracts correlation functions, multiplied with a power of the volume per atom. The feature names are named according to the correlation function names in the database, but a suffix of _Vd is appended. d is an integer inticading the power. Thus, if the name is for example c2_d0000_0_00_V2, it means that the column contains the correlation function c2_d0000_0_00, multiplied by V^2, where V is the volume per atom. :param db_name: Name of the database :param tab_name: Name of the table where correlation functions are stored :param cf_names: Name of the correlation functions that should be extracted :param order: Each ECI will be a polynomial in the volume of the passed order (default: 0) :param properties: List of properties that should be used in fitting. Can be energy, pressure, bulk_mod. (default: ['energy', 'pressure']). The pressure is always assumed to be zero (e.g. the energies passed are for relaxed structures.). All entries in the database are expected to have an energy. The remaining properties (e.g. bulk_mod) is not required for all structures. In class will pick up and the material property for the structures where it is present. :param cf_order: The energy is expanded up and (inluding) this order in the correlation function. Default is 1. """ def __init__( self, db_name: str, tab_name: str, cf_names: List[str], order: Optional[int] = 0, properties: Tuple[str] = ("energy", "pressure"), cf_order: int = 1, ) -> None: super().__init__(db_name) self.tab_name = tab_name self.order = order self.cf_names = cf_names self.properties = properties self.cf_order = cf_order self._groups = []
[docs] def build(self, ids: List[int]) -> np.ndarray: """ Construct the design matrix and the target value required to fit a cluster expansion model to all material properties in self.properties. :param ids: List of ids to take into account """ cf_getter = CorrelationFunctionGetter( self.db_name, self.tab_name, self.cf_names, order=self.cf_order ) cf = cf_getter.get_property(ids) volume_getter = FinalVolumeGetter(self.db_name) volumes = volume_getter.get_property(ids) energy_getter = FinalStructEnergyGetter(self.db_name) energies = energy_getter.get_property(ids) target_values = [energies] target_val_names = ["energy"] cf_vol_dep = np.zeros((cf.shape[0], (self.order + 1) * cf.shape[1])) counter = 0 self._feat_names = [] self._groups = list(range(cf_vol_dep.shape[0])) # Construct the part of the design matrix that corresponds to # energy fitting (e.g. if there are N energy calculations we construct # the firxt N rows of the design matrix) for col in range(cf.shape[1]): for power in range(self.order + 1): cf_vol_dep[:, counter] = cf[:, col] * volumes**power counter += 1 self._feat_names.append(cf_getter.names[col] + f"_V{power}") # Add pressure data. P = dE/dV = 0 (we assume relaxed structures) if "pressure" in self.properties: pressure_cf = np.zeros_like(cf_vol_dep) counter = 0 # Construct the part of the design matrix that corresponds to # pressure fitting (e.g. if there are N energy calculations, # we construct row N:2*N). Note that the pressure is assumed # to be zero for col in range(0, cf.shape[1]): for p in range(self.order + 1): pressure_cf[:, counter] = p * cf[:, col] * volumes ** (p - 1) counter += 1 # Update the full design matrix and the target values cf_vol_dep = np.vstack((cf_vol_dep, pressure_cf)) target_values.append(np.zeros(pressure_cf.shape[0])) target_val_names.append("pressure") # All data points have a pressure, the groups just repeats # themselves self._groups += self._groups id_row = {db_id: i for i, db_id in enumerate(ids)} # Add bulk modulus data. B = V*d^2E/dV^2 if "bulk_mod" in self.properties: bulk_mod = self._extract_key(set(ids), "bulk_mod") bulk_mod_rows = [id_row[key] for key in bulk_mod] bulk_mod_cf = np.zeros((len(bulk_mod), cf_vol_dep.shape[1])) counter = 0 vols = volumes[bulk_mod_rows] # Extract the part of the design matrix that corresponds to fitting # bulk moduli. If there are Nb calculations that has a bulk modulus # we construct row 2*N:2*N+Nb for col in range(0, cf.shape[1]): for power in range(self.order + 1): bulk_mod_cf[:, counter] = vols * cf[bulk_mod_rows, col] bulk_mod_cf[:, counter] *= power * (power - 1) * vols ** (power - 2) counter += 1 # Update the full design matrix as well as the target values cf_vol_dep = np.vstack((cf_vol_dep, bulk_mod_cf)) target_values.append(bulk_mod.values()) target_val_names.append("bulk_mod") self._groups += [self._groups[r] for r in bulk_mod_rows] # Add the pressure derivative of the bulk modulus (dB/dP) if "dBdP" in self.properties: dBdP = self._extract_key(set(ids), "dBdP") dBdP_rows = [id_row[key] for key in dBdP] dBdP_cf = np.zeros((len(dBdP), cf_vol_dep.shape[1])) dBdP = np.array(list(dBdP.values())) counter = 0 vols = volumes[dBdP_rows] for col in range(cf.shape[1]): for power in range(self.order + 1): # Double derivative of the energy dE2 = power * (power - 1) * cf[dBdP_rows, col] * vols ** (power - 2) # Third derivative of the energy dE3 = ( power * (power - 1) * (power - 2) * cf[dBdP_rows, col] * vols ** (power - 3) ) dBdP_cf[:, counter] = (1.0 + dBdP) * dE2 + vols * dE3 counter += 1 # Update the full design matrix cf_vol_dep = np.vstack((cf_vol_dep, dBdP_cf)) target_values.append(np.zeros(len(dBdP))) target_val_names.append("dBdP") self._groups += [self._groups[r] for r in dBdP_rows] # Assign the global design matrix to the attribute _X, the vector with # all target values to _y and construct the name of the target_value by # joining all subnames self._X = cf_vol_dep self._y = np.array([x for values in target_values for x in values]) self._target_name = "-".join(target_val_names)
def _extract_key(self, ids: Set[int], key: str) -> Dict[int, float]: """ Extract a key from the database for the ids in the passed set that has a bulk modlus entry. The function returns a dictionary where the key is the ID in the database and the value is the extracted quantity :param ids: Set of all ids that should be considered :param key: Name of the key to be extracted """ query = f"SELECT value, id FROM number_key_values WHERE key='{key}'" id_key = {} with connect(self.db_name) as db: cur = db.connection.cursor() cur.execute(query) for value, db_id in cur.fetchall(): # Extract only the ones that are present in the set of ids if db_id in ids: id_key[db_id] = value return id_key
[docs] def get_data(self, select_cond: List[tuple]) -> Tuple[np.ndarray, np.ndarray]: """ Return the design matrix and the target values for the entries corresponding to select_cond. :param select_cond: ASE select condition. The design matrix and the target vector will be extracted for rows matching the passed condition. """ ids = get_ids(select_cond, self.db_name) self.build(ids) return self._X, self._y
[docs] def groups(self) -> List[int]: """ Return the group of each rows. """ return self._groups
[docs] def make_corr_func_data_manager( prop: str, db_name: str, tab_name: str, cf_names: Sequence[str], **kwargs ) -> DataManager: """Helper function for creating a correlation function data manager""" if prop.lower() == "energy": return CorrFuncEnergyDataManager(db_name, tab_name, cf_names, **kwargs) # Assume it's a property data manager return CorrFuncPropertyDataManager(prop, db_name, tab_name, cf_names, **kwargs)